

HIV Prevention: A Global Priority

Wafaa El-Sadr, MD, MPH ICAP, Columbia University

Global. Health. Action. COLUMBIA UNIVERSITY Mailman School of Public Healtl

RARE CANCER SEEN In 41 Homosexuals

Outbreak Occurs Among Men in New York and California —8 Died Inside 2 Years

By LAWRENCE K. ALTMAN.

Doctors in New York and California have diagnosed among homosexual men 41 cases of a rare and often rapidly fatal form of cancer. Eight of the victims died less than 24 months after the diagnosis, was unlike.

The plane of the outbreak is unknown, and there is as yet no evidence of contaston. But the doctors who have made the

Global Number of People Living with HIV, by year

Life Expectancy in Africa

Life Expectancy in Africa

One World One Hope

Vancouver 1996

Vancouver, Canada July 7-12, 1996

One World, One Hope.

Expansion of Treatment and Deaths from HIV in the US

Palella et al, NEJM 1998

Expansion of Treatment and Deaths from HIV in the US

Palella et al, NEJM 1998

HIV Treatment

Global Scale-Up of HIV Treatment

Scale-Up of ART & AIDS-Related Deaths

People receiving antiretroviral therapy
People dying from AIDS-related causes

Global HIVAIDS Response, 2011

Deaths in PEPFAR-Supported Countries in Africa

Deaths in PEPFAR-Supported Countries in Africa

Adapted Bendavid et al. CROI 2012

HIV Treatment and Worker Productivity

Adapted Larson et al, 2008

HIV Treatment and Worker Productivity

Adapted Larson et al, 2008

<u>ŧŇŧŧŇŧŧŇŧŇŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤ</u> ſŧŧŧſŧŧſŧſŧſŧŢŧŢŧŢŧŢŧŢŧŢŧŢŧŢŧŢŧŢŧŢ <u>ŧŇŧŧŇŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤ</u> <u>ŧ</u>ſŧŧſŧ 2.5 million <u>Å</u>ÅŇ<u>Å</u>Ň<u>Å</u>Ť **^^^** n**n**n*n people infected every year <u>ŧņŧŧņŧ</u> **ÅÅ**¶Å¶ÅŶ ŇŧŧŇŧŤŔŇŧŇŧŤŔŇŧŇŤŦŇŢŤŇŦŇŢŤŇŦŇŤŤŇŤŤŤŤŤŤŤŤŤŤŤ <u>ŧŇŧŧŇŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤ</u> ſŧŧŧſŧŧſŧſŧſŧŢŧŢŧŢŧŢŧŢŧŢŧŢŧŢŧŢŧŢŧŢ **ŮŮ**ŮŮ <u>Å</u>ÅŇ<u>Å</u>Ň<u>Å</u>Ť 7,000 <u>ŤŤŤŤŤŤŤŤ</u> Ů**ŧ**ŧŮ**ŧ**Ť <u>ŧ</u>ſŧŧſŧ **Ť*Ť New infections every day 1,000 in children <u>ŧŇŧŧŇŧŤŧŇŧŇŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤ</u> ŇŧŧŇŧŤŔŇŧŇŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŤ

We can't treat our way out of this epidemic

Plasma HIV RNA Levels and HIV Rates in Discordant Couples

Viral load (HIV-1 RNA copies/ml) and HIV transmission

Maternal ART and Perinatal HIV Transmission--US WITS: 1990-2004

WITS Cooper et al, JAIDS 2002

ART Use and New HIV Diagnoses--British Columbia, Canada

Adapted Montaner et al, Lancet 2010

Sero-Discordant Couples

Use of ART and HIV Incidence: Observational Studies in Discordant Couples

Study or Subgroup	Rate Ratio (95% CI)
Del Romero 2010	0.21 [0.01, 3.75]
Donnell 2010*	0.08 [0.01, 0.57]
Melo 2008	0.10 [0.01, 1.67]
Musicco 1994	0.88 [0.36, 2.16]
Reynolds 2011	0.10 [0.01, 1.64]
Sullivan 2009	0.21 [0.08, 0.56]
Wang 2010	1.44 [0.85, 2.44]
TOTAL	0.34 [0.13, 0.92]

* Linked transmissions

Adapted-Anglemyer et al Cochrane Reviews 2011

Genital and Plasma HIV RNA and **Risk of HIV Transmission**

Female-Male HIV Transmission

Male-Female HIV Transmission

Baeten et al. Sci.Transl Med 2011

≥5

HPTN 052 Study: Design

HIV-infected CD4 350 to 550cells/μL HIV discordant partner

Immediate ART 350-550 cells/µl Deferred ART CD4 <250>200

Couples received intensive counseling on risk reduction and use of condoms

Primary Transmission Endpoint: Primary Clinical Endpoint:

Linked transmissions WHO stage 4, Pulmonary TB, Severe bacterial infection or Death

HPTN 052 Study: Key Prevention Finding

The New York Times

Early H.I.V. Therapy Sharply Curbs

LINE 4714-50704 2011

Transmissio

By DONALD G. MoNEIL Jr. Published: May 12, 2011

On Thursday, Dr. Fa

from the EDITORIAL director When 7 2005 here Published: May 2

> The discove AIDS virus and nations troubling is

INSIDE THIS WEEK: TECHNOLOGY QUARTE

The Economist The trap for Turkey Wall Street's plumbing p Lady Gaga, Mother Teres Brazil's boiling economy The farce that is FIFA

The end of AIDS?

How 5 million lives have been saved, and a plague could now be defeated

BREAKTHROUGH OF THE YEAR

SCIENCE

HIV Treatment as Prevention

23 December 2011

We can treat our way out of this epidemic

What would be the impact of treatment of discordant couples on the HIV Epidemic?

İ	Î	İ	Ň	Ť	Ť	Î	Ť	Ť	İ
İ	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť
İ	İ	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť
Ť	İ	Ť	İ	Ť	Ť	Ť	Ť	Ť	Ť
Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť
Ť	Ť	Ť	Ť	ŧ	Ť	Ť	Ť	Ť	Ť
Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť
Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť	Ť

Country	Population	HIV prevalence	Percent discordant couples
Lesotho	2,067,000	19.5%	13.6%
Rwanda	9,998,000	1.7%	3.1%
Malawi	15,263,000	7.1%	9.7%
Ghana	23,837,000	0.9%	2%

Effect of ART for Discordant Couples on *HIV incidence* and *Number of Infections Prevented* at Population Level

70% Stable Partners

El-Sadr, Coburn, Blower, AIDS 2011
What would be the effect of scale-up of HIV treatment on HIV epidemic?

Review

Could widespread use of combination antiretroviral therapy eradicate HIV epidemics?

J X Velasco-Hernandez, H B Gershengorn, and S M Blower

Modelling the effect of combination antiretroviral treatments on HIV incidence

Matthew G. Law^a, Garrett Prestage^a, Andrew Grulich^a, Paul Van de Ven^b and Susan Kippax^b

Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model

Reuben M Granich, Charles F Gilks, Christopher Dye, Kevin M De Cock, Brian G Williams

A Mathematical Model of Comprehensive Test-and-Treat Services and HIV Incidence among Men Who Have Sex with Men in the United States

Stephen W. Sorensen¹, Stephanie L. Sansom¹*, John T. Brooks¹, Gary Marks¹, Elizabeth M. Begier², Kate Buchacz¹, Elizabeth A. DiNenno¹, Jonathan H. Mermin¹, Peter H. Kilmarx¹

Lower Risk of HIV Acquisition With expanded ART Coverage

- Hlabisa, South Africa: rural community with 24% adult HIV prevalence
 20,000 pts started on ART since 2004
- 1413 seroconversions observed; HIV incidence estimated according to time-adjusted ART coverage in local community

*Adjusted for age, sex, community-level HIV prevalence, urban vs rural locale, marital status,

> 1 partner in last 12 mos, and household wealth index.

Tanser F, et al. CROI 2012

What is Needed to Achieve Population Impact of ART for Prevention

HIV to ART: Testing, Care, and Treatment-- Mozambique

The Continuum of HIV Care--US

Of all with HIV infection, 850,000 individuals do not have suppressed HIV RNA (72%) MMWR (60), 2011

HPTN 043— Community HIV Testing

	Tanzania		Zimbabwe		Thailand	
	CBVCT Plus SVCT	SVCT	CBVCT Plus SVCT	SVCT	CBVCT Plus SVCT	SVCT
Population size	6250	6733	10,700	12,150	11,270	10.033
First time HIV test	37%	9%	52%	5%	69%	23%

Sweat et al. Lancet 2011

CD4+ Cell Count at Initiation of HIV Treatment

Mugglin C, et al. CROI 2012. Truong HH, et al. CROI 2012.

Source of HIV Testing and CD4+ Cell Count

	Home-based	VCT	PITC	ТВ
Number tested	946	10,261	8,073	272
Percent female	72%	66%	62%	50%
Mean CD4+ in HIV+ (cells/mm ³⁾ Missing data	323 (194-491) ^{23%}	217 (87-404) 45%	190 (70-371) 52%	136 (59-266) ^{38%}
WHO III or IV Missing data	14% 26%	38% 18%	46% 23%	79% 19%

CD4+ Count at Entry into Care --HOPS

Factors associated with late diagnosis

- Not being MSM
- Age <u>></u>35
- Not white race/ethnicity

OR: 1.99 OR: 2.14 OR: 1.45

Buchacz et al, AIDS Research and Treatment 2012

Factors Associated with Initiation of ART at Higher CD4+ cell counts- San Francisco

At CD4>500 cells/mm ³	P value
White	<0.001
MSM	0.003
Non poor	0.005
Diagnosed by private provider	<0.001
At CD4>350 cells/mm ³	P value
Older	<0.001
White	<0.001
MSM	0.012
Non-poor	<0.001

Retention in ART Programs

36 cohorts 226, 307 patients All losses except transfers

Retention: •6 months: 86.1% •12 months: 80.2% •24 months: 76.8% •36 months: 72.3%

HIV Care/Prevention Continuum

Test, Link to Care Plus Treat HPTN 065 (TLC-Plus Study)

HPTN 065 Test Link to Care Plus Treat (TLC-Plus) PURPOSE

To evaluate the **feasibility** of an enhanced community-level HIV test, link-to-care plus treat strategy in the U.S.

HPTN 065 (TLC Plus): Study Design

Study	HPTN 071 (PopART)	Iringa /JHU Study	TasP-ANRS	Botswana/HSPH
Principal investigator	 Richard Hayes (PI) Sarah Fidler , Helen Ayles & Nulda Beyer (Co-PIs) 	 David D. Celentano (PI) Jessie Mbwanbo & Deanna Kerrigan (coPI) 	• Francois Dabis & Marie-Louise Newell PIs	• Max Essex (PI)
Funder	• NIAID, NIMH, OGAC, BMGF	• USAID, OGAC	• ANRS	• CDC, OGAC
Country	Zambia & South Africa	Tanzania	South Africa	Botswana
Design	Cluster RCT	Cluster RCT	Cluster-RCT	Paired cluster-RCT
Clusters	 24 (15 Zambia, 9 in SA) ~55,000 per cluster 	 24 total clusters ~10,000 per cluster 	 34 total clusters 1,250 per cluster	 30 total clusters 5,000 per cluster
Study arms	Three arm	Two arm	Two arm	Two arm
	 Home-based C&T, mobile & clinic-based C&T Male circumcision 	 HIV testing, care and ART for CD4< 350 Male circumcision 	 Home-based C&T Immediate ART initiation for all 	 Home-based C&T ART for CD4<350, WHO I/II or HIV
Interventions	 Risk reduction counseling & condom provision Immediate ART to all HIV+ 	 Cash transfer - women BCC Key groups FSW, MSM) 	HIV+	RNA <u>></u> 10,000 • Male circumcision • PMTCT (option B)
Primary outcome	HIV incidence over 2 yrs	HIV incidence at 2 yrs	HIV incidence at 2 yrs	HIV incidence 2 yrs
How measured	Prospective cohort	Prospective cohort	Prospective cohort	Prospective cohort
Estimated annual HIV incidence	1.17% (Zambia) , 1.49% (SA)	1.0 per 100 py	2.5%	<u>+</u> 1.5% (15-49 yrs)

Botswana- CDC

Iringa Study- USAID

HPTN 071 –NIH PopART

Balancing the Individual and Society

DHHS Guidelines, 2012: When to Start

 ART recommended for <u>all</u> HIV-infected patients; strength of recommendation varies according to CD4+ cell count

CD4+ Cell Count	Recommendation
< 350 cells/mm³	Start ART (AI)
■ 350-500 cells/mm³	Start ART (All)
> 500 cells/mm ³	Start ART (BIII)

Strength of recommendation:

- A: Strong
- **B: Moderate**
- **C: Optional**

Quality of evidence:

I: ≥1 randomized controlled trials

II: ≥1 well-designed nonrandomized trials or observational cohort studies with

- long-term clinical outcomes
- **III: Expert opinion**

HIV Disease Progression and Death by CD4+ cell Count

Anglaret et al. CID 2011

HIV Disease Progression and Death by CD4+ cell Count

Anglaret et al. CID 2011

HPTN 052 Study: Key Finding

Cohen MS, et al. N Engl J Med. 2011

START Study

HIV-infected ART-naïve CD4+ count > 500 cells/mm³

Early ART Group

Initiate ART immediately N=2,000

Deferred ART Group

Defer ART until the CD4+ count declines to < 350 cells/mm³ or AIDS N=2,000

Endpoints: Serious AIDS Event Non-AIDS Events or Death

Strategic Timing of AntiRetroviral Treatment

START Study

In all, 238 Clinical Research Sites in 35 countries With 68 sites in US and Puerto Rico

START Study

68 Clinical Research Sites in the U.S. and Puerto Rico

Clinical Trials for Prevention of Sexual Transmission of HIV

Intervention	Positive Effect	Adverse Effect	No Effect	Number of trials
Treatment	1		-	1
Behavioral	-		7	7
Structural	1		2	3
Male circumcision	3		1	4
STI treatment	1		8	9
Vaccine	1		3	4
PrEP (Topical microbicides) Non ARVs ARVs	- 1	1	11 1	12 2
PrEP (Systemic, oral)	3		3	6

Adapted Padian et al. Lancet 2011

Pre-Exposure Prophylaxis (PrEP)

Pre-exposure prophylaxis

Efficacy of Topical and Oral PrEP

The New York Times

FDA Advisory Committee Supports Approval of Gilead's Truvada[®] for Reducing the Risk of Acquiring HIV Published: May 11, 2012

Taking Truvada to Prevent H.I.V. Also Comes With Risks Published: May 14, 2012

Debate Rages Over HIV Drug

U.S. debates recommending drug for AIDS prevention

Adherence and HIV Acquisition-- iPrEx

HIV Conversions per PY (%)

Birnkrant, FDA 2012

Adherence and HIV Acquisition– Partners PrEP Study

Relative risk in reduction

TFV Level

Birnkrant, FDA 2012

Infected *Cases* and Matched *Controls* with ≥10 ng/ml Tenofovir in Plasma at Visits Defining Infection Windows

Pre-Exposure Prophylaxis (PrEP)

Pre-exposure prophylaxis

HIV Prevention Continuum HIV Negative Individuals

Efficacious Interventions

Effectiveness and Safety of Tenofovir Gel, an Antiretroviral Microbicide, for the Prevention of HIV Infection in Women Guarraisha Abdool Karim, *et al. Science* **329**, 1168 (2010); DOI: 10.1126/science.1193748

Effectiveness and Safety of Tenofovir Gel, an Antiretroviral Microbicide, for the Prevention of HIV Infection in Women

Ouarraisha Abdool Karim,³⁻²*t Salim S, Abdool Karim,^{3-2,4} Janet A. Frohlch,³ Anneke C. Grobler,¹ Cheryl Baxter,² Leila E. Mansoor,³ Ayesha B. M. Kharany,³ Sengeziwe Sibeko,³ Koleka P, Milsanz,³ Zaheen Omar,³ Tanuja N. Gengiah,⁵ Silvia Maarschatk,³ Natasha Arulappan,³ Muketisiwe Mlotshwa,³ Lynn Morris,⁴ Douglas Taylor,⁵ on behalf of the CAPRISA 004 Trial Group<u>i</u>

PIVOTAL STUDY FINDS THAT HIV MEDICATIONS ARE HIGHLY EFFECTIVE AS PROPHYLAXIS AGAINST HIV INFECTION IN MEN AND WOMEN IN AFRICA

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

DECEMBER 30, 2010

VOL. 363 NO. 27

Preexposure Chemoprophylaxis for HIV Prevention in Men Who Have Sex with Men

 Robert M. Grant, M.D., M.P.H., Javier R. Lama, M.D., M.P.H., Peter L. Anderson, Pharm.D., Vanessa McMahan, B.S., Albert Y. Liu, M.D., M.P.H., Lorena Vargas, Pedro Goicochea, M.Sc., Martín Casapía, M.D., M.P.H., Juan Vicente Guanira-Carranza, M.D., M.P.H., Maria E. Ramirez-Cardich, M.D., Orlando Montoya-Herrera, M.Sc., Felmo Fernández, M.D., Valdilea G. Veloso, M.D., Ph.D., Susan P. Buchbinder, M.D., Suwat Chariyalertsak, M.D., Dr.P.H., Mauro Schechter, M.D., Ph.D., Linda-Gail Bekker, M.B., Ch.B., Ph.D., Kenneth H. Maver, M.D.,

Prevention of HIV-1 Infection with Early Antiretroviral Therapy

Myron S. Cohen, M.D., Ying Q. Chen, Ph.D., Marybeth McCauley, M.P.H., Theresa Gamble, Ph.D., Mina C. Hosseinipour, M.D., Nagalingeswaran Kumarasamy, M.B., B.S., James G. Hakim, M.D., Johnstone Kumwenda, F.R.C.P., Beatriz Grinsztejn, M.D., Jose H.S. Pilotto, M.D., Sheela V. Godbole, M.D.,

Combination Prevention

Contribution by Key Populations to the HIV Epidemic

Conclusions-I

- Substantial achievements in the response to the HIV epidemic
- New prevention tools offer promise for control of HIV transmission
- Further efforts are needed to define how best to use these interventions:
 - Defining risks and benefits for individuals
 - Optimizing every step of the continuum of care and prevention
 - Determining efficacy of various interventions in specific populations

Conclusions-II

- Need for other efficacious interventions (vaccine, structural, behavioral)
- Research design challenges ahead
 - Design of studies in key hard to reach populations
 - Defining the population impact of various prevention interventions
 - Assessment of impact of combination strategies for prevention
 - Defining which interventions to be prioritized by various communities and countries
- Much remains to be done:
 - 6 million people need ART now for their own health
 - 2.5 million new infections annually

<u>ŧŇŧŧŇŧŤŧŇŧŇŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤ</u> ſŧŧŧſŧŧſŧſŧſŧŢŧŢŧŢŧŢŧŢŧŢŧŢŧŢŧŢŧŢŧŢ <u>ŧŇŧŧŇŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤŧŤ</u> **≜Ů**ŧ₽Ů₽ ****^** 6 million ŤŧŧŤŧŤ <u>*</u>†<u>*</u>†<u>*</u>† 2.5 million ####### ŧŢŧţŢŧ ŇŧŧŇŧŤŔŇŧŇŧŤŔŇŧŇŤŦŇŢŤŇŦŇŢŤŇŦŇŤŤŇŤŤŤŤŤŤŤŤŤŤŤ

Thank you

